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1. Introduction 
 
Superscalar processors are processors that can issue and execute more than one instruction in-
parallel through use of more than one execution unit taking an in-order program as input and also 
to produce the output in the same order. The PowerPC/Power and Pentium micro-processor 
families are the popular super-scalar processors for the desktop. Their key super-scalar features 
are discussed in the rest of the report. Other features like branch prediction that help the processor 
to make maximum use of the available ILP are also discussed. 
 

2. Superscalar features in Pentium and PowerPC 
 
Superscalar processors have multiple execution units. This enables them to execute more than one 
instruction at any clock cycle. The following table lists the super-scalar features like the issue 
width, retirement width and number of execution units in some processors of both Pentium and 
PowerPC families. 
 
 PowerPC 

620 
PowerPC 

7502 
PowerPC 

9704 
Pentium III Pentium 45 

#issue per clock 4 2 8 3 3 
#retired per clock 4 2 53 3 3 
#Integer Units 2+1 2 2 2 5 
#Floating Point Units 1 1 2 2 1 
#Branch Units 1 1 1 - - 
#Load/Store Units 1 1 2 1 2 (1+1)  
#In-flight instructions App. 37 App. 16 >200 unspecified 126 
 
Note:  
1. All values are the maximum 
2. PowerPC 750 has an additional System Register Unit 
3. Five only if one of them is a branch instruction 
4. PowerPC 970 has 4 other execution units if AltiVec is used and it also has a conditional 
register unit 
5. Pentium 4 has a special floating point move unit. It has a load unit and a store unit. Branching 
is computed by the integer unit. 
 
 
Super-scalar processors are primarily defined by the number of instructions that can be issued to 
the next stage of execution. Though normally the number of instructions that can be retired is the 
same as the number of instructions issued, it is not always the same. PowerPC 970 is an example 
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for that. Since the strength of a chain is always determined by that of the weakest link, PowerPC 
970 should be regarded as a 5-way superscalar processor. 
 
Please note that all the processors above have lots of available parallelism in-terms of number of 
execution units than the number of instructions that can be issued. Systems are designed this way 
for two purposes: 
 1. Have enough execution units for peak execution bandwidth 
 2. To execute any available instruction when slower instructions are being executed. 
 
When issuing 3 instructions in a cycle, certain selection criteria must be met for the instructions 
to be chosen to be issued in that cycle. For example, Pentium 4 can issue 3 instructions only when 
it can find a combination of 1 load, 1 store and 1 manipulative non-memory operation. PowerPC 
620 can issue 4 instructions only if one of them is a branch. Such restric tions, we think, are laid to 
give a preference to certain kind of high latency instructions and also taking into account the 
percentage of a type of instructions that the processor normally encounters. It is also based on the 
design of other features like the reservation stations or instruction queues. Timing considerations 
are taken into account when making these decisions. 
 
In modern micro-processors, the number of instructions in the ISA keeps increasing. This makes 
instruction decoding a bit complex. So, instructions are pre-decoded and stored in a decoded 
format. Some processors like Pentium 4 go a step ahead and replace the traditional instruction 
cache with a cache that stores decoded instructions along a path (trace) that is predicted using 
advanced branch prediction techniques. To populate such a cache, aggressive branch prediction is 
used to speculatively select a trace dynamically. 
 
Superscalar processors look for parallelism in the program and execute instructions that can be 
executed in parallel. One of the essential steps in identifying parallelism is to identify 
dependencies among instructions and possibly resolving them by using other techniques. Such 
activities take time, especially when the number of instructions that are analysed for parallelism 
grows higher. Also, the weakest link or the slowest part of the pipeline is the fetching of 
instructions from the memory. So, every fetch should be made use of effectively. Instruction 
caches help us reduce the latency involved with fetching. And often the number of instructions 
issued is less than the number of instructions that can be fetched from the cache. So, to 
continuously engage the decoder and to decouple the issue, the dispatch of instructions to the 
execution unit and to have a place where instructions could wait for its predecessors to complete, 
buffers are employed. One such technique is called shelving and in processors like Pentium 4 this 
buffer is the same as ROB (Re-Order Buffer). The ROB is a buffer that tracks the status of an 
instruction from the moment resources are allocated for the instruction till the instruction is 
retired. And processors like PowerPC which practice aggressive out-of-order execution, employ a 
slightly different kind of a buffer and is called reservation stations. PowerPC processors had been 
having reservations stations for each of the execution unit and instructions are dispatched and 
they wait in the reservation stations of that execution unit.  
 

2.1. Re-Order Buffer 
 
Re-order buffers are essential and as the name suggests it is used to re-order instructions that have 
been executed out-of-order. It is used so that the instructions can be retired in the same sequence 
as they were received by the processors eventhough they were executed out-of-order. In some 
ways, it is similar to the completion buffer that PowerPC has into which all instructions that are 
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completed are present. And the retirement unit picks the oldest instructions in the group and 
retires them. 
 
Re-order buffers are also suitable to unify other buffers like the shelving buffers into one and thus 
can be used to track the execution status of an instruction in the processor with just one buffer. 
That is exactly what the P6 micro-architecture and the NetBurst micro-architecture does. In the 
P6 micro-architecture, the rename registers are also part of the ROB. This approach helps to 
reduce hardware cost involved in indexing several buffers.  
 

2.2. Reservation Station 
 
Reservation stations are used as waiting slots for instructions. They wait for not only for the 
execution unit to be ready; but also for the inputs it needs to be available  before it can be 
executed. These slots not only have the internal op-code and tags to the registers; but sometimes 
the value of the operands themselves. This means that if the operands for an instruction are not 
ready when the instruction was dispatched into the reservation station, the instruction should 
snoop the “forwarding” bus to see if the operands are ready so that it can pick up the operand(s) 
as and when they are available. 
 
In PowerPC 750, all execution units have only one entry in the reservation station except the 
load-store unit. So, each execution unit had a dedicated reservation station. But PowerPC 970 has 
queues that are shared by two execution units and each queue holds different number of entries 
depending on the execution units that it is feeding. PowerPC 620 also has dedicated reservation 
stations for each execution unit; but there can be more than one entry in the reservation stations. 
Execution units which take longer to produce the result have more reservation stations. It is done 
this way to reduce the number of dispatch stalls that would happen because of saturation of the 
reservation station of a particular type of EU. 
 
Pentium 4 processors also have queues where the instructions wait to be scheduled. But it has 
only two queues viz., a memory operations queue and an arithmetic instruction queue. 
Instructions wait there to be scheduled; but the difference between the queues in Pentium 4 and 
the reservation station in PowerPC 750 is that the reservation stations in PowerPC hold 
instructions that have already been dispatched; but the instructions in Pentium 4’s queues are still 
not dispatched. So, in a way, the queue is actually used as a shelving space.  
 

2.3. Dynamic Instruction scheduling 
 
When multiple instructions are ready to be executed at the same time, different processors use 
different ways to pick the instructions from the ready pool and pass them to the execution unit. In 
PowerPC 750, each execution unit has only one entry in the reservation station. So, scheduling 
has become little easier. The instruction gets scheduled as soon as it has all operands that are 
needed and as soon as the EU is available. 
 
However, in Pentium 4 and PowerPC 970, it would be a bit different as they have more than 
instruction in their queues and in a position where one queue has to feed more than one execution 
unit. 
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In Pentium 4, schedulers operate on a queue in a first-in first-out (FIFO) order. The first 
instruction in the queue should be dispatched and scheduled first before other instructions in the 
queue can be scheduled. This might seem like in-order execution, which in fact is correct; but the 
presence of two different queues and the fact that instructions from one queue can be scheduled 
out-of-order with respect to instructions from the other queue. Thus, Pentium achieves out-of-
order execution. PowerPC 970 schedules instructions also in the FIFO order. But it is more 
aggressively out-of-order as it has more queues per execution unit than Pentium4. And thus there 
is more opportunity for out-of-order execution. 
 
Instruction scheduling not necessarily starts after the reservation stations, but infact, it starts at the 
decode and issue stages of the pipeline and more interestingly, it starts when the program is 
compiled. Before discussing about optimisations that a compiler can do when compiling for a 
superscalar processor, we would like to discuss what happens when resources are running low in 
the processor – stalls and then understand how a compiler can schedule instructions to prevent 
these stalls. 
 

2.4. Stalls in a superscalar pipeline 
 
Stalls that are normally seen in a scalar pipelined processor are caused by a memory load, by a 
branch mis-prediction or by an exception. In superscalar processors, the reasons can be much 
more. Apart from these stalls, other stalls in superscalar processors can be classified as issue stalls 
or dispatch stalls.  
 
The type of stalls that is typical among superscalar processors are 

• Unavailability of free entries in the reservation stations. If reservation stations of 
a particular execution unit are full, then a new instruction to be scheduled would 
have no place to go. In such cases, most processors just stall dispatch of the 
instruction. eg.: PowerPC 620 

• Pentium4 allocates all resources needed by an instruction to execute before it 
puts the instruction in the queue. The resources include register ports, ROB entry, 
rename registers, etc… Even if one of the resources is not available, it stalls the 
pipeline. PowerPC does the same as well.  

• Unavailability of free execution units. This could either be a cause for the 
absence of reservation stations or even if there are free entries in the reservation 
station, we might not have free port to send an instruction to the reservation 
station as one has just been issued in this cycle. Though one might argue that this 
is not really a stall, please note that in most processors, if one instruction in a 
queue cannot be issued/dispatched, the other instructions behind it in the queue 
cannot be issued/dispatched as well 

• Another reason would be that the instruction is simply not ready to be executed 
as not all operands are available. 

• Or it could be a really intentional stall cause by specific instructions in the 
instruction set that are to be used for synchronisation purposes. 

 
These stalls cause a program to potentially underutilise the available ILP in the processor. This is 
where compiler optimisations can help the program to maximise the benefit of having ILP. 
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2.5. Static scheduling by compilers 
 
Compilers have improved in their ability to analyse the program and produce an instruction 
stream that is highly optimised against certain criterions. Though vectorising or parallelising 
compilers that make use of SIMD operations are hard to see, there are compilers which would do 
that. But, we would restrict the scope of this discussion to just optimising for the superscalar 
features. 
 
PowerPC 750 can dispatch only two instructions in a single clock cycle. But in-order to dispatch 
two instructions, the instructions must not need the same execution unit as it would lead to a 
dispatch stall otherwise. Since the window for dispatching out-of-order is just two consecutive 
instructions, the compiler must take care that two consecutive instructions do not need the same 
execution unit.   
 
PowerPC 750, just as earlier PowerPC processors, places lots of importance in resolving a 
conditional branch early. So, to help the processor in resolving the branches early instead of 
predicting it, we instructions that compute the condition can be scheduled as early as possible 
before the branch instruction. This would ensure that the branch can be resolved with the result of 
the condition that is already available. Scheduling loads and stores by the compiler also plays a 
major role in the optimisation. Though always difficult, a general rule would be that the producer 
of a value be placed as ahead of its first consumer as possible.  
 
Compilation based on “machine description” has proven to be extremely beneficial and is known 
to produce extremely optimised code. Information like how many execution units of each type are 
available and what is the minimum number of cycles that a particular operation can take are 
brought into the instruction scheduling phase of the compilation. Advances in VLIW compilers 
can only help when compiling for super-scalar processors. The cycle based list scheduler in the 
Trimaran research compiler[8] for example schedules instructions just enough as to avoid a stall 
when executing an instruction that was dependant on the other. Such schedulers could help boost 
performance of programs compiled for super-scalar processors as well.  
 
Another popular concept among compilers that support predicated execution is software 
pipelining. Software pipelining is a concept that is closely associated with loop unrolling and in 
which more than one iteration of the loop is computed at the same time just like pipelining that is 
employed in the micro-processor itself. But for software pipelining to be really effective for 
super-scalar processors, the compiler definitely needs the machine description. 
 
Please note that all optimisations that involve the use of machine descriptions are optimised only 
for that target. Though the code should work on all future successors of that superscalar target, 
the generated code is not optimised for the successors. 
 

3. Advanced features that improve performance 
 
There have always been two traditional factors that affect the performance of a program in a 
processor. These are the ways processors handle control and data dependencies. Though these 
factors should be considered even in non-superscalar pipelined processors, it becomes more 
important to handle control and data dependencies better in super-scalar processors in which a 
bubble in the early part of the pipeline is lots of ILP wasted and thus a performance loss. The 
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following concepts are widely used in various super-scalar processors to reduce the loss in 
performance. 
 

3.1. Branch prediction 
 
In super-scalar pipelined processors, branches and jumps mostly change the sequential flow of 
execution. But at the same time, conditional branches might not change the sequential flow. This 
means that the processor should either wait until it resolves the condition or assume that the 
branch would later be resolved as either taken or not-taken before continuing to fetch the 
instructions that would follow the branch. Since waiting for the branch to be resolved before 
fetching the next instructions introduce bubbles in the pipeline, modern processors predict the 
result of the conditional branch to keep the pipeline busy. Different processors employ different 
methods to predict the branches. 
 
Modern processors like PowerPC and Pentium employ some kind of static prediction. Almost all 
processors use PC relative branching and thus have the value of offsets in their branch instruction. 
The static prediction used in most processors is such that the backward branches (if there are 
negative offsets in the instruction) are predicted as taken. The reason behind this is that backward 
branches are normally encountered in loops which are always taken except once when the loops 
terminal condition is met.  
 
Some processors predict the forward conditional branches also as taken whereas some processors 
statically predict them as not-taken. Each approach has its own pros and cons. Instructions from 
the fall-through (not-taken) block of a conditional branch can potentially be in the instruction 
cache because the instructions in the fall-through block would be sequentially after the branch in 
the program. So, even if the prediction that the branch would be taken was later found to be 
incorrect, the probability of an instruction fetch from the not-taken path being a cache hit is 
higher because these instructions might be in the same cache line as the branch instruction. So, 
the mis-prediction penalty might be lesser if the forward branch is also statically predicted as 
taken. But the disadvantage is that even if the branch is predicted as taken (and even if the 
prediction is correct), the instructions from the taken path would have to be fetched from the 
memory hierarchy and the probability that the taken path would also be in the cache is less. So, if 
there is a cache miss, we might have some penalty even though the prediction is correct unless the 
we have BTIC (Branch target instruction cache). But if the forward conditional branch is 
predicted as not-taken, there might not be any penalty if the prediction is correct. So, different 
programs perform differently in these two approaches. This means that for good performance, the 
compiler/programmer must arrange the program correctly to experience low penalty. 
 
With compilers able to perform profiling on a sample input set on the programs, the compilers 
can also give a good hint on the likely resolution of a branch to the processor. So, some 
instruction sets introduced hints in the instruction encoding of a conditional branch. PowerPC 620 
is one such processor which enables the compiler to provide hints on branches. Even if the 
programmer is not equipped with profiling tools, the programmer if he/she understands the 
compiler and the processor can write code such that the code that would most frequently get 
executed is in the fall-through or the taken path depending on the processor’s static prediction 
approach or set the branch hints appropriately. 
 
Since the static branch prediction techniques are based on heuristics, performance would vary 
with programs. Dynamic branch prediction techniques help the processor to make predictions on 
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branches by following the program’s branching behaviour.  The following table lists the dynamic 
branch prediction techniques that are used in some PowerPC and Pentium processors. 
 
From the figure below, it can be noted that the two main dynamic prediction techniques favoured 
by the processor designers are the 1-bit or 2-bit saturating counter based predictor and derivates 
of the two level adaptive algorithm proposed by Yeh and Patt. 
 
The 1-bit predictor records the history of the last occurrence of a branch and the future branches 
are predicted using this value. When a conditional branch changes direction after the first time, 
there is bound to be a mis-prediction. When the branch is resolved, the history bit of the branch 
would be updated and this would force the predictor to change its prediction the next time this 
branch is encountered. The main advantage of this over static branch prediction schemes is that it 
follows the branches’ last behaviour rather than assuming based on some heuristics. This seems 
to be increasing the branch prediction success rate. The 2-bit saturating counter based branch 
predictor which is also a single table based predictor increases the success rate even more. This is 
used to classify branches as taken, strongly taken, not-taken and strongly not-taken. So, the 
granularity of prediction now becomes higher from 2 level in the 1-bit predictor to 4-level in the 
2-bit predictor. Thus, a frequently not-taken branch which is just once occasionally taken is 
always predicted as not-taken by the 2-bit predictor. But a 1-bit predictor would present a mis-
prediction every time the conditional branch resolves in a way opposite to its last occurrence.  
 

 PowerPC 620 PowerPC 750 PowerPC 970 Pentium 4 Pentium-M 

Static Branch 
Prediction 

Forward branches 
are not-taken and 

backward 
branches are 

taken 

Same as  
PowerPC 620 

Same as 
PowerPC 620 

Same as 
PowerPC 620 

Same as 
PowerPC 620 

Branch hints from 
compiler 

No Yes. Software 
can also override 

the hardware 
branch prediction 

results with a 
hint. 

Yes. Software 
can also override 

the hardware 
branch prediction 
results with this 

hint. 

Yes. The support 
is available only 

for certain branch 
instructions. 

Yes. The 
support is 

available only 
for certain 

branch 
instructions. 

Dynamic Branch 
Prediction 

1. 256 entry 2-
way associative 
BTAC 
2.  2048 direct 
mapped Branch 
History Table  

1. 64-entry two 
instruction per 
entry BTIC 
2. 512 entry 2-bit 
branch history 
table 

1. 16K entry 1-bit 
predictor 
2. 16K entry 1-bit 
global predictor 
based on group 
execution 
sequence, 
3. 16K entry 1-bit 
selector table  

1. Branch Target 
Buffer (one for 
speculative fetch) 
and the other one 
fetching 
instructions from 
the trace cache 

1. Global 
Branch target 
buffer 
2. Counting 
loop predictor 
3. Indirect 
branch 
predictor 

 
 
Another approach commonly used is a cache of all branch instruction’s target addresses as in 
BTAC (and/or a few instructions along the taken path as in the case of BTIC). Predictions are 
made depending on the whether we have a hit or a miss in the cache. Please note that there is a 
higher cost associated towards employing such a cache. So, we can have only limited number of 
entries in the cache. So, processors do not normally just use BTAC/BTIC for prediction; but they 
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use this approach and another more accurate (but slightly slower) algorithm like the 2-bit 
predictor which has lesser associated hardware cost. Power PC 620 and PowerPC 750 are 
examples of processors that employ such methods. The decision as to which prediction to 
consider is normally based on a static rule. Normally, since BTAC/BTIC is faster, it is used in the 
fetch/prefetch stage and the regular 2-bit predictor is used at a later stage in the pipeline. 
 
Yeh and Patt’s paper [3] on a two level branch prediction scheme is an attempt to increase the 
accuracy of prediction based on a pattern of history with the predictor giving different predictions 
for different history patterns. The first table is a table /register that is indexed by the branch 
address (or just a part of the branch address) and each entry holds the true result of the last k 
occurrences of a conditional branch in a k-bit vector. This vector/pattern is used to reference 
another table of tables and a table (called the pattern table) is chosen based on the branch address 
once again. In one variant of the implementation, each branch would have its own pattern table 
and 2k entries (all possible patterns with a k-bit vector). So, a prediction is based on the value that 
this present in the pattern table entry chosen by the k-bit vector of the branch in the history table. 
While this is found to give as much as 96% success rate for SPECInt programs, the success rate 
also depends on the implementation. If multip le branch instructions are made to share a history 
register or if the same pattern table is shared by multiple branches, then there would lots of 
interference in the prediction of a branch from other branches’ history in the group of branches 
that share the same history register or pattern table. As it can be seen from the above table, the P6 
micro-architecture used in Penitum Pro, Penitum II and Pentium III uses this algorithm and is 
implemented such that 4 branches share the same history register. This causes some amount of 
branch prediction interference. Looking at the declared success rate of Pentium 4’s branch 
prediction scheme, we speculate that it would have used more hardware to reduce the 
interference. 
 
PowerPC 970 (desktop version of IBM Power 4 processor) processor uses a similar two level 
approach in its global selector table algorithm. But the history is not based on the branches; but is 
based on the sequence of groups of instructions that lead to the execution of this group of 
instructions which has the branch. The actual prediction is stored in a table similar to the pattern 
history table in Yeh and Patt’s algorithm and this is a hashed table and the key is obtained by 
performing an exclusive or with the branch address on the history register. One of the interesting 
points to note about 970’s algorithm, it had moved from a 2-bit branch predictor used in earlier 
PowerPC micro-processors to a 1-bit branch predictor; but the difference is this table can hold 
more number of branch entries. Though PowerPC uses two dynamic branch prediction techniques 
like its predecessors, it continues to see which algorithm performs better for each branch using a 
selector table. So, the decision on which prediction scheme to use is not static as in the other 
processors; but dynamic. It would be surprising to know that when condition register is available 
for early branch resolution, PowerPC 750 resolves the conditional branch instead of predicting 
the direction and target of the branch. But PowerPC 970 always uses branch prediction even if the 
condition register is ready with the value. This might be because of the unusually deeper pipeline 
that 970 has for a RISC processor. 
 
Pentium-M, the first processor from Intel designed with thermal and power constraints from the 
beginning; but is also designed for good performance. Branch prediction assumes more 
significance in mobile processors where a mis-prediction results in loss in performance; not just 
in lost processor cycles but lost power in all the switching involved in those cycles. If the branch 
prediction is more accurate, not only we can achieve a boost in performance; but save some 
power. In an attempt to achieve that, Pentium-M uses a counting loop predictor and another 
indirect branch predictor to assist in predicting all branches in a fixed strength loop and to predict 
targets even for the ‘switch.. case’ construct in C/C++ respectively[1]. Though there is an 



9/11 

associated hardware cost with this hardware, the boost in performance saves power. Please note 
that the main advantage of the counting loop predictor over Yeh and Patt’s two-level adaptive 
algorithm is that it can support loops of high iteration count. 
 

3.2. Register renaming and Register Alias Tables 
 
Having looked the branch prediction techniques used in Pentium and PowerPC which try to 
speculatively resolve control dependencies, this section would deal with a concept to deal with 
data dependencies (false data dependencies to be precise).  
 
False data dependencies arise because of insufficiency of registers in the system and because of 
compilers’ tendency to use as few registers as possible even if there is no dearth for registers. 
Though this is not a big problem in scalar pipelined processors, but in superscalar processors, 
false data dependencies restrict the parallelism that can be realised from a program running on a 
superscalar processor. Register renaming attempts to eliminate the effect of false dependency by 
providing lots of shadow registers that can be used instead. Pentium 4 provides 128 shadow 
registers for its sets of 5 general purpose architectural registers. Every instruction (macro or micro 
op) that produces a result in a register is allocated a new register for the destination ( or 
destination registers depending on the architecture). This requires a table (called a Register Alias 
Table) to track the allocation of shadow registers to the various instructions. It is required so that 
subsequent instructions, which consume the value produced by the instruction, whose destination 
was just renamed, would know where to fetch the data from.  
 
As mentioned above, RAT holds the architectural register to the last rename register allocated. 
When this combines with branch prediction where speculation is also involved could potentially 
make the design of RAT more complex. But extent of complexity depends upon the mis-
prediction recovery scheme adopted by the processor.  
 
The P6 micro-architecture does not maintain a separate Rename register file; but the rename 
registers are a part of the Re-Order Buffer (ROB). This means there is also a separate 
architectural register file to which the values would be copied from the ROB entry that is to be 
retired. The P6 micro-architecture fetches instructions from the correct path after resolving a 
branch that was mis-predicted; but those instructions are not dispatched until all the instructions 
younger than and including the branch instruction are retired. This architecture increases the 
penalty on a mis-prediction; but reduces the need to maintain a stack of the latest RAT in every 
speculatively executed basic block. Instead, the RAT can be made to point to the architectural 
register file  and dispatch of instructions from the next basic block can continue after that. 
Otherwise, we would need shadow RATs to store the state of RAT on every branch that is 
encountered in a speculative path. 
 
Pentium 4, however, uses two separate RAT and the rename registers are decoupled from the 
ROB. One is used for tracking the speculative rename register allocations in the front-end during 
dispatching and the other is used to maintain the latest architectural register when instructions are 
retired. So, there is no need for a separate architectural register file and instead everything is 
merged into a huge register file with 128 registers. PowerPC 750 on the hand uses a smaller and a 
separate rename register file of just 6 rename registers. This might be sufficient for PowerPC 
because of two reasons. First, PowerPC has 32 general purpose registers exposed to the user for 
use in programs; but Pentium 4 having started as a traditional CISC has only 5 GPRs. This means 
that probability of seeing a false data dependency when code is generated from a compiler that 
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does superscalar optimisations is less in the case of a PowerPC. Second, Pentium 4 reduces the 
CISC instructions that it sees into smaller RISC like micro-ops. These micro-ops would also need 
registers to work and store their result. This means that internally Pentium 4 needs more registers. 
We think that these are the reasons behind this difference. 
 
It would be interesting to look at an architecture like Pentium’s, in which a common condition 
register would be changed by almost all instructions. In out-of-order execution, the integrity of 
the condition register must also be maintained. There might be number of ways to do this; but we 
speculate that one of the following implementations is used in the processors. 

1. Use a condition register in every entry in ROB. This is similar to P6’s concept of 
having rename registers in every entry in ROB. Thus, we also rename condition 
registers. 

2. Another approach would be to compute the flags or condition register when the 
processor is about to retire the instruction and directly update the architectural 
conditional register. While this approach would save some hardware space, it 
would introduce additional timing burden in a pipeline stage and in high 
frequency designs, this stage could even spill out as a separate stage in the pipe. 

 

3.3. Reordering memory access 
 
In an aggressive out-of-order execution core, all instructions are capable of being executed in out-
of-order. While it is easier to identify and resolve false data dependencies in the hardware, it is 
difficult to identify early if two memory accesses are made to the same address. Since memory 
loads have a longer latency than memory stores (because memory stores first made to a write-
buffer normally before actually writing to the memory), some high performance processors like 
PowerPC 750 schedules a younger memory load before an older store hoping that the address 
they access would be different. Anyways, PowerPC 750 also maintains a load queue and a store 
queue that maintains a list of all stores and loads that have been executed; but not yet retired. So, 
all stores are compared against the loads in the load queue and if any load that is younger than the 
store is in the load queue and has accessed the same memory location, then all instructions 
younger than this store instruction is flushed and re-executed. Since such dependencies that need 
memory dis-ambiguation are lesser in probability, such re-ordering helps a super-scalar machine 
to improve performance. 
 

4. Conclusion 
 
Superscalar processors employ more aggressive techniques like branch prediction and enable 
speculative fetching of instruction streams far beyond the current sequence of instructions. This 
speculative fetch needs to be predicted correctly for future deeply pipelined high frequency 
designs to post good performance numbers. Using aggressive techniques not only improve 
performance; but could also help reduce power consumption. Since power consumption would 
definitely become a major issue in both the high performance servers and in the mobile 
notebooks, designers should begin to look for ways to improve efficiency and performance. One 
way that the designers would potentially look forward in future super-scalar processors is the 
concept of value prediction that is used to predict or speculate the value so that true data 
dependencies can also be conquered with a considerable success rate. This would further improve 
performance. With explicitly parallel processors like Itanium, the compilers would have 
increasing role to play in defining the performance of a processor. 
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